DELAWARE RIVER BASIN TROUT BROOK, SUSSEX COUNTY NEW JERSEY # N.J. NO NAME DAM NO. 36 NJ 00532 PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM \Box # DEPARTMENT OF THE ARMY Philadelphia District Corps of Engineers Philadelphia Pennsylvania **JULY 1981** REPT. NO: DAEN NAP-53842/ NJ-00532-81/07 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER DAEN/NAP53842/NJ00532-81/07 TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Phase I Inspection Report FINAL National Dam Safety Program S. DERFORMING ORG. REPORT NUMBER N.J. No Name Dam No. 36, NJ00532 Sussex County, NJ AUTHOR(a) E. CONTRACT OR GRANT NUMBER(#) DACW61-79-C-0011 1 McDermott, Richard J., P.E. Gribbin, John E., P.E. 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Storch Engineers 220 Ridgedale Ave. Florham Park, NJ 07932 N. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources 12. REPORT DATE Jul**y, 19**81 13. NUMBER OF PAGES P.O. Box CNO29 Trenton, NJ 08625 15. SECURITY CLASS. (of this report) 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Unclassified Philadelphia, PA 19106 15. DECLASSIFICATION DOWNGRADING 5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Y National Dam Safety Program. N.J. No Name Dam Number 36 (NJ00532), Delaware River Basin, Trout Brook, Sussex County, 17. DISTRIBUTION STATEMENT (of the abetract enter New Jersey. Phase I Inspection Rept. 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams National Dam Safety Program Embankment Embankments N.J. No Name Dam No. 36, NJ Visual Inspection Structural Analysis Sussex County, NJ Delaware River Basin, NJ Outlet works Spillways Trout Brook, NJ 20. ABSTRACT (Continue on reverse side M responsely and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report. DD 1747 1473 EDITION OF 1 HOV 65 IS OFFICETE SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | SECURITY CLASSIFICATION OF | THIS PAGE(When Data Enforce | 0 | | |----------------------------|-----------------------------|---|---| | | | | , | | | · | | 1 | # DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT, CORPS OF ENGINEERS CUSTOM HOUSE-2 D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106 NAPEN-N 27 JUL 1981 Honorable Brendan T. Byrne Governor of New Jersey frenton, New Jersey 08621 Dear Governor Pyrne: Inclosed is the Phase I Inspection Report for N.J. No Name No. 30 Dam in Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report. Based on visual inspection, available records, calculations and past operational performance, N.J. No Name No. 36 Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillways are considered inadequate because a flow equivalent to 30 percent of the One Hundred Year Flood would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended: - a. The structural stability of the embankment and the spillways' adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure structural stability and spillway adequacy should be initiated. - b. Within six months from the date of approval of this report the following remedial actions should be initiated: - (1) The outlet works should be restored to operational adequacy. - (2) Cracked concrete of the spillway headwal' should be repaired. - (3) Eroded areas along the upstream face of the dam should be filled and stabilized. - (4) Deteriorated corrugated metal discharge pipe should be repaired or replaced. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. Honorable Brendan T. Byrne - (5) Trees and bushes on the embankment should be removed. - c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report. - d. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report. - e. Seepage at the dam should be periodically monitored in order to detect any changes in its severity or its effects on the structural stability of the dam. A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter. Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available. An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations. Sincerely, l Incl As stated ROGER L. BALDWIN Lieutenant Colonel, Corps of Engineers Commander and District Engineer Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625 Mr. John O'Dowd, Acting Chief Bureau of Flood Plain Regulation Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625 #### N.J. NO NAME NO. 36 DAM (NJ00532) #### CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS This dam was inspected on 29 December 1980 by Storch Engineers, under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367. N.J. No Name No. 36 Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillways are considered inadequate because a flow equivalent to 30 percent of the One Hundred Year Flood would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended: - a. The structural stability of the embankment and the spillways' adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure structural stability and spillway adequacy should be initiated. - b. Within six months from the date of approval of this report the following remedial actions should be initiated: - (1) The outlet works should be restored to operational adequacy. - (2) Cracked concrete of the spillway headwall should be repaired. - (3) Eroded areas along the upstream face of the dam should be filled and stabilized. - (4) Deteriorated corrugated metal discharge pipe should be repaired or replaced. - (5) Trees and bushes on the embankment should be removed. - c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report. - d. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report. e. Seepage at the dam should be periodically monitored in order to detect any changes in its severity or its effects on the structural stability of the dam. APPROVED: ROGER L. BALDWIN Lieutenant Colonel, Corps of Engineers Commander and District Engineer DATE: 27/11/8/ # PHASE I REPORT NATIONAL DAM SAFETY PROGRAM Name of Dam: N.J. No Name No. 36 Dam, I.D. NJ00532 State Located: New Jersey County Located: Sussex Drainage Basin: Delaware River Stream: Tributary to Trout Brook Date of Inspection: December 29, 1980 # Assessment of General
Condition of Dam Based on visual inspection, past operational performance and Phase I engineering analyses, N.J. No Name No. 36 Dam is assessed as being in fair overall condition. Based on investigations of the downstream flood plain made in connection with this report, it is recommended that the hazard potential classification be downgraded from high to significant hazard. Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge capacity of the spillway is not sufficient to pass the designated spillway design flood (100-year storm) without an overtopping of the dam. The spillway is capable of passing approximately 29 percent of the SDF. Therefore, the owner should engage a professional engineer experienced in the design and construction of dams in the near future to perform more accurate hydraulic and hydrologic analyses relating to the spillway capacity. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented. The owner should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam. The structural stability of the embankment should be investigated in the near future by a professional engineer experienced in the design and construction of dams. Based on the findings of the investigation, the need for and type of remedial measures should be determined and then implemented. Arrangements should be made in the near future to monitor the seepage on a periodic basis in order to detect any changes in its condition. The monitoring should be performed by a professional engineer experienced in the design and construction of dams. In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future: - 1) The outlet works should be restored to operational adequacy. - 2) Cracked concrete of the spillway headwall should be repaired. - 3) Eroded areas along the upstream face of the dam should be filled and stabilized. - 4) Deteriorated corrugated metal discharge pipes should be repaired or replaced. - 5) Trees and bushes on the embankment should be removed. In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam. Luber My Sunott Richard J. McDermott, P.E. John E. Gribbin, P.E. OVERVIEW - N.J. NO NAME NO. 36 DAM 20 JANUARY 1981 # TABLE OF CONTENTS | | <u>Page</u> | |---|-------------| | ASSESSMENT OF GENERAL CONDITION OF DAM | i | | OVERVIEW PHOTO | iii | | TABLE OF CONTENTS | iv | | PREFACE | vi | | SECTION 1 - PROJECT INFORMATION 1.1 General 1.2 Description of Project 1.3 Pertinent Data | 1 | | SECTION 2 - ENGINEERING DATA 2.1 Design 2.2 Construction 2.3 Operation 2.4 Evaluation | 7 | | SECTION 3 - VISUAL INSPECTION 3.1 Findings | 8 | | SECTION 4 - OPERATIONAL PROCEDURES 4.1 Procedures 4.2 Maintenance of Dam 4.3 Maintenance of Operating Facilities | 11 | | 4.4 Description of Warning System | | # TABLE OF CONTENTS (cont.) | | | Page | |-----------|------------------------------------|------| | SECTION 5 | - HYDRAULIC/HYDROLOGIC | | | | Evaluation of Features | 13 | | | | | | SECTION 6 | - STRUCTURAL STABILITY | 15 | | 6.1 | Evaluation of Structural Stability | | | | | | | SECTION 7 | - ASSESSMENT AND RECOMMENDATIONS | 17 | | 7.1 | Dam Assessment | | | 7.2 | Recommendations | | | | | | | PLATES | | | | 1 | KEY MAP | | | 2 | VICINITY MAP | | | 3 | SOIL MAP | | | 4 | OVERVIEW | | | 5 | GENERAL PLAN | | | 6 | SECTION | | | 7 | PHOTO LOCATION PLAN | | | | | | | APPENDICE | S | | | 1 | Check List - Visual Inspection | | | | Check List - Engineering Data | | | 2 | Photographs | | | 3 | Engineering Data | | | 4 | Hydraulic/Hydrologic Computations | | | 5 | Bibliography | | # PREFACE This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected. Phase I inspections are not intended to provide detailed hydraulic and hydrologic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydraulic and hydrologic studies, considering the size of the dam, its general condition and the downstream damage potential. PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM N.J. NO NAME NO. 36 DAM, I.D. NJ00532 SECTION 1: PROJECT INFORMATION # 1.1 General ## a. Authority Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers. # b. Purpose of Inspection The visual inspection of N.J. No Name No. 36 Dam was made on December 29, 1980. The purpose of the inspection was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances. # 1.2 Description of Project ## a. Description The dam consists of an earth embankment with a principal spillway at the right end, emergency spillway at the left end and low level outlet near the center. The principal spillway consists of three 12-inch corrugated metal pipes transversely penetrating the embankment while the emergency spillway consists of a grassed channel adjacent to the end of the embankment. The outlet works consists of a low level 12-inch corrugated metal pipe with a gate valve located near its discharge end. The outlet discharges directly into Trout Brook which runs along the downstream toe of the dam. The crest and upstream face of the dam is stabilized by heavy grass cover while the downstream face is overgrown with trees and bushes. The elevation of the spillway crest is 895.5, National Geodetic Vertical Datum (N.G.V.D.) while that of the crest of dam is 896.7. The elevation of the downstream invert of the outlet works is 873.7 while that of the channel bed is 873.1. The overall length of the dam is 510 feet and its height is 23.0 feet. #### b. Location N.J. No Name No. 36 Dam is located in Stillwater Township, Sussex County, New Jersey. It impounds a recreational lake located on private lands. Principal access to the dam is by a private driveway entered from Fairview Lakes Road. Discharge from the spillway of the dam flows into Trout Brook. #### c. Size and Hazard Classification The dam is classified in accordance with criteria presented in "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers. Size categories consist of Small, Intermediate and Large while hazard categories are designated as Low, Significant and High. <u>Size Classification:</u> N.J. No Name No. 36 Dam is classified as "Small" size since its maximum storage volume is 73 acre-feet (which is less than 1000 acre-feet) and its height is 23.0 feet (which is less than 40 feet). Hazard Classification: Visual inspection of the downstream flood plain of the dam indicates that failure of the dam could cause overtopping of the small dam located approximately 1100 feet from the dam and inundate the Fairview Lakes Road bridge located 1200 feet from the dam. It is not anticipated that dam failure during a storm equivalent to the SDF would cause significant inundation of the two dwellings located approximately 1200 feet from the dam. Loss of more than a few lives is not anticipated. Accordingly, N.J. No Name No. 36 Dam is classified as "Significant" hazard. # d. Ownership N.J. No Name No. 36 Dam is owned by Mr. M.B. Roessel, Fairview Lakes Road, Newton, New Jersey 07860. ## e. Purpose of Dam The purpose of the dam is the impoundment of a recreational lake. # f. Design and Construction History Reportedly, N.J. No Name No. 36 Dam was constructed in 1957 at the request of the present owner. Mr. John Crandon reportedly designed and constructed the dam. # g. Normal Operational Procedures The dam and appurtenances are
maintained by the owner. There is no fixed schedule of maintenance; repairs are made as the need arises. The outlet works is used to drain the lake for lake maintenance purposes, but its gate valve is not presently operable. Reportedly, the lake has never been lowered since it was constructed in 1957. # 1.3 Pertinent Data | a. Drainage Area 0.15 square mi | |---------------------------------| |---------------------------------| # b. Discharge at Damsite | Maximum flood at damsite | Unknown | |---------------------------------|---------| | Outlet Works at pool elevation | 10 cfs. | | Spillway capacity at top of dam | 62 cfs | # c. Elevation (N.G.V.D.) | Top of Dam | 896.7 | |-------------------------------|-----------------| | Maximum pool-design surcharge | 896.9 | | Recreation pool | 895.5 | | Principal spillway crest | 895.5 | | Emergency spillway crest | 895.7 | | Stream bed at toe of dam | 871.7 | | Maximum tailwater | 878 (Estimated) | # d. Reservoir | Length of recreation pool | 800 feet (Scaled) | |---------------------------|----------------------| | Length of maximum pool | 900 feet (Estimated) | # e. Storage (Acre-feet) | Recreation pool | 62 | |------------------|----| | Design surcharge | 75 | | Top of dam | 73 | # f. Reservoir Surface (acres) | Top of dam | 9.2 (Estimated) | |---------------------------------|-----------------| | Maximum pool - design surcharge | 9.3 (Estimated) | | Recreation pool | 8.7 | # g. Dam | Earthfill | |---------------------| | 510 feet | | 23.0 feet | | 1 horiz. to 1 vert. | | 1 horiz. to 1 vert. | | Unknown | | Unknown | | Unknown | | Unknown | | | | | # h. Diversion and Regulating Tunnel Spillway i. | Туре | (3) 12-inch Corrugated | |----------------|------------------------| | | Metal pipes | | length of weir | 3 feet | N.A. Crest elevation Gates Approach channel Discharge channel 895.5 N.A. N.A. Earth swale # j. Emergency Spillway Type Length of weir Crest elevation Gates Approach channel Discharge channel Grassed Spillway 20 feet 895.7 N.A. N.A. Discharge flows overland # k. Regulating Outlet 12" diameter low-level outlet works controlled by gate valve near discharge end. #### SECTION 2: ENGINEERING DATA # 2.1 Design No plans or calculations pertaining to the original construction of the dam could be obtained. Reportedly, the dam was designed and constructed by Mr. John Crandon under contract to the owner Mr. M.B. Roessel. # 2.2 Construction No data or reports pertaining to the construction of the dam are available. # 2.3 Operation No data or reports pertaining to operations are available. ## 2.4 Evaluation #### a. Availability No data or reports pertaining to the operations of the dam are available. ## b. Adequacy Available engineering data pertaining to N.J. No Name No. 36 Dam is not adequate to be of significant assistance to the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b. ## c. Validity The validity of engineering data cannot be assessed due to the absence of data. #### SECTION 3: VISUAL INSPECTION # 3.1 Findings #### a. General The inspection of N.J. No Name No. 36 Dam was performed on December 29, 1980 by staff members of Storch Engineers. A copy of the visual inspection check list is contained in Appendix 1. The following procedures were employed for the inspection: - 1) The embankment of the dam, appurtenant structures and adjacent areas were examined. - The embankment and accessible appurtenant structures were measured and key elevations determined by surveyor's level. - 3) The embankment, appurtenant structures and adjacent areas were photographed. - 4) The downstream flood plain was toured to evaluate downstream development and restricting structures. #### b. Dam The crest of the dam appeared to be generally evenly graded although evidence of vehicle wheel ruts were observed. The crest and upstream face of the dam were grass covered with a few small trees located on the upstream face. There appeared to be some riprap located on the upstream face of the dam, but detailed observation was not possible due to the presence of ice and snow. The downstream face of the dam was fairly well graded and was overgrown with trees and bushes ranging in size from 2 inches to 12 inches. Many small boulders, 12 inches to 18 inches in diameter, were located on the downstream face of the dam which appeared to have a slope of 1 horizontal to 1 vertical. At at least two locations, the face was bulged out in relation to adjoining areas of the embankment. One bulge measured approximately 15 feet across and about 10 to 12 feet high. It protruded from the line of the downstream side of the embankment by approximately 2 to 3 feet. At the toe of the bulge, a spot which was wet and contained orange deposits indicating possible seepage was observed. Trout Brook which flows along a portion of the downstream side of the dam, was observed to lie very close to the dam at the point of the bulge. The right abutment of the dam which is natural earth appeared to be in satisfactory condition. The emergency spillway at the left end of the dam appeared to have been cut into original soil. The downstream side of the dam near the left end appeared to be more irregularly shaped and more thickly overgrown with trees, weeds and briars than the remaining portions. There was a wet area observed at the toe of dam approximately 70 to 100 feet left of the right end of the dam. The wet area contained orange colored deposits. In addition, a localized wet area containing orange colored deposits was observed at the toe at the location of the embankment bulge. #### c. Appurtenant Structures The invert of the three spillway pipes was approximately 6 inches above the water level at the time of inspection. The headwall was in generally satisfactory condition except that it was cracked at the top of the right hand pipe. The inverts of the three CMP's were deteriorated due to weathering. A manhole housing the outlet gate is located at the toe of dam about 20 feet from the downstream channel. The operating mechanism for the gate is located inside the manhole but it was rusty and appeared to have been unused for a considerable period of time. The condition of the 12-inch CMP which discharges directly into the downstream channel appeared to be satisfactory. # d. Description of Reservoir Area The reservoir is almost entirely wooded with one home site located at the upstream end of the lake. The remainder of the shores slope up from the lake at approximately a 25 to 50 percent grade. The trees are a mixture of pine and hardwood. #### e. Downstream Channel The subject dam is not constructed across Trout Brook but is located adjacent to it. The downstream channel (Trout Brook) consists of a wide shallow meandering natural stream with cobbled bottom and low wooded banks approximately 1 to 2 feet high. A dam which impounds a small lake is located approximately 1100 feet downstream of the dam. # SECTION 4: OPERATIONAL PROCEDURES # 4.1 Procedures The level of water in the impoundment of the subject dam is regulated by discharge through the three (3) 12-inch concrete culvert pipes which comprise the spillway. Reportedly, the dam has never been drawn down since construction was completed in 1957. # 4.2 Maintenance of the Dam Reportedly, maintenance on the dam is performed on an "as needed" basis. # 4.3 Maintenance of Operating Facilities Reportedly, regular maintenance of operating facilities consists of cleaning the spillway culvert pipes and the trimming and cutting of trees and brush located on the crest and upstream face of the dam. # 4.4. Description of Warning System Reportedly no warning system is currently in use for the dam. # 4.5 Evaluation of Operational Adequacy The operation of the dam has been successful to the extent that the dam reportedly has not been overtopped. Maintenance documentation is poor and the maintenance program for the dam has not been adequate in the following areas: - 1) Outlet works facilities not maintained in functioning condition. - 2) Cracked concrete on the spillway headwall not repaired. - 3) Eroded areas along the upstream face of dam not properly stabilized. - 4) Deteriorated corrugated metal pipe in spillway not repaired. - 5) Trees and bushes on the downstream face of the embankment not removed. #### SECTION 5: HYDRAULIC/HYDROLOGIC # 5.1 Evaluation of Features # a. Design Data The quantity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff quantity, called the spillway design flood (SDF) is described in terms of return frequency or probable maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for N.J. No Name #36 Dam falls in a range of 100-year frequency to 1/2 PMF. In this case, the low end of the range, 100-year frequency, is chosen since the factors used to select size and hazard classification are on the low side of their respective ranges. The SDF peak computed for N.J. No Name No. 36 Dam is 226 c.f.s. This value is derived from the 100-year flood hydrograph computed by the use of the HEC-1-DAM Flood Hydrograph Computer Program using the Soil Conservation Service unit hydrograph with curvilinear transformation. Hydrologic computations and computer output are contained in Appendix 4. The spillway discharge rates were computed by the use of culvert capacity charts assuming inlet control. The total spillway discharge with lake level equal to the top of the dam was computed to be 62 c.f.s. The SDF was routed through the dam by use of the HEC-1-DAM computer program using the modified Puls Method. In routing the SDF, it was found that the dam crest would be overtopped by a depth of 0.2 feet. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria
developed by the U.S. Army Corps of Engineers. # b. Experience Data Reportedly, the dam has not been overtopped since its construction in 1957. # c. Visual Observation No evidence was found at the time of inspection that would indicate that the dam had been overtopped. # d. Overtopping Potential As indicated in paragraph 5.1.a., a storm of magnitude equal to the SDF would cause overtopping of the dam by a depth of 0.2 foot over the crest of the dam. The spillway is capable of passing approximately 29 percent of the SDF with the lake level equal to the top of dam. #### e. Drawdown Time Drawdown of the lake is accomplished by opening the gate in the low level 12-inch CMP. Total time for drawdown is estimated to be 4.5 days. (See Appendix 4.) #### SECTION 6: STRUCTURAL STABILITY # 6.1 Evaluation of Structural Stability #### Visual Observations The dam appeared, at the time of inspection to be generally outwardly stable. Evidence of possible seepage was observed at two locations including one of two bulged areas of the downstream side of embankment. Also, the downstream slope of embankment appeared excessively steep. The effect of the bulged embankment face and seepage on the stability of the dam could not be assessed. # Generalized Soils Description The generalized soils description for the dam site consists of recent alluvium composed of stratified materials deposited by streams overlying silt containing shale fragments. Bedrock is shallow and consists of slate and shale of Ordovician age shown as Martinsburg shale on the Geologic Map of New Jersey. #### Design and Construction Data С. Analysis of structural stability and construction data for the embankment are not available. #### d. Operating Records No operating records are available for the dam. The water level of the impoundment is not monitored. #### Post-Construction Changes e. Reportedly, there has not been any post-construction changes. No evidence of significant post-construction changes was noted at the time of inspection. # f. Seismic Stability N.J. No Name No. 36 Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if they have adequate stability under static loading conditions. N.J. No Name No. 36 Dam appeared to be generally stable under static loading conditions at the time of inspection. # SECTION 7: ASSESSMENT AND RECOMMENDATIONS # 7.1 Dam Assessment ## a. Safety Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of N.J. No Name No. 36 Dam is assessed as being inadequate. The spillway is not able to pass the SDF without an overtopping of the dam. The embankment appeared, at the time of inspection, to be generally outwardly stable. Observed seepage and bulging in the embankment are not considered to be evidence of immediate dam instability. # b. Adequacy of Information Information sources for this report include 1) field inspections, 2) USGS quadrangle, and 3) consultation with the owner of the dam. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams." Some of the absent data are as follows: - 1. Construction and as-built drawings. - 2. Description of fill material for embankment. - 3. Design computations and reports. - 4. Soils report for the site. - 5. Maintenance documentation c. Necessity for Additional Data/Evaluation Additional data and evaluation is considered necessary to assess the structural stability of the embankment. # 7.2 Recommendations #### a. Remedial Measures Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a, the spillway is considered to be inadequate. It is therefore recommended that a professional engineer experienced in the design and construction of dams be engaged in the near future to perform more accurate hydraulic and hydrologic analyses relating to spillway capacity. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented. The owner should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam. In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future: - The outlet works should be restored to operational adequacy. - Cracked concrete of the spillway headwall should be repaired. - 3) Eroded areas along the upstream face of the dam should be filled and stabilized. - 4) Deteriorated corrugated metal discharge pipe should be repaired or replaced. - 5) Trees and bushes on the embankment should be removed. #### b. Maintenance In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam. #### c. Additional Studies The structural stability of the embankment should be investigated in the near future by a professional engineer experienced in the design and construction of dams. Based on the findings of the investigation, the need for and type of remedial measures should be determined and then implemented. In addition, the observed seepage should be monitored on a periodic basis by a professional engineer experienced in the design and construction of dams in order to detect any changes in its condition. PLATES STORCH ENGINEERS FLORHAM PARK, NEW JERSEY OIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR PROTECTION TRENTON, NEW JERSEY INSPECTION AND EVALUATION OF DAMS KEY MAP N.J. No Name No. 36 DAM SCALE: NONE DATE: FEB.1981 AR Recent alluvium composed of stratified ma deposited by stream. Sh-2 Slate and shale bedrock of Ordovician age. as the Martinsgurg shale on the Geologic Map of New Jersey (ordovician age formation) Note: Information taken from Rutgers University, Soil Survey of New Jersey, Report No. 11, Sussex County, November 1953 and Geologic Map of New Jersey prepared by J.V. Lewis and H. Kummel 1910-1912, revised by H. B. Kummel 1931 and M. Johnson 1950. PLATE 3 STORCH ENGINEERS FLORHAM PARK, NEW JERSEY. DIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR. PROTECTION TRENTON, NEW JERSEY. INSPECTION AND EVALUATION OF DAMS SOIL MAP N.J. No Name No. 36 DAM SCALE: NONE DATE: FEB.1981 ### TYPICAL DAM SECTION PLATE 6 STORCH ENGINEERS FLORHAM PARK, NEW JERSEY) D:VISION OF WATER RESOURCES N.J. DEPT. OF ENVIR PROTECTION TRENTON, NEW JERSEY INSPECTION AND EVALUATION OF DAMS SECTION N.J. NO NAME No. 36 DAM N.J. I.D. 00532 SCALE: NONE DATE: APRIL, 1981 ### APPENDIX 1 Check List - Visual Inspection Check List - Engineering Data Check List Visual Inspection Phase I | dame of Dam N.J. No Name #36 | County Sussex | State N.J. Coordi | Coordinators NJUEP | |--|-----------------------|---------------------------------------|--------------------| | Jate(s) Inspection 12/29/81 | Weather Partly Cloudy | Temperature 35 ⁰ F. | | | Pool Elevation at time of Inspection 895.5 | n 895.5 M.S.L. | Tailwater at Time of Inspection 875.1 | tion 875.1 M.S.L. | |
Inspection Personnel: | | ` | | | John Gribbin | Mark Brady | | | | Charles Osterkorn | Richard McDermott | | | | Daniel Buckelew | | | | | | | | | Owners Representative not present Recorder John Gribbin ### **EMBANKMENT** | | EMBANKMENT | | |---|--|------------------------------| | VISUAL EXAMINATION OF | OBSERVATIONS | REMARKS OR RECOMMENDATIONS | | GENERAL | Automobile ruts on crest. Crest and upstream face covered by thick stand of grass. Downstream face overgrown by briars and trees (2" to 12"). Also, boulders observed on downstream face. | Trees should be removed. | | JUNCTION OF EMBANKMENT
AND ABUTMENT, SPILLWAY
AND DAM | Junctions appeared stable. | • | | ANY NOTICEABLE SEEPAGE | Seepage observed in two locations: 1. Wet point at toe of dam at location of bulge in embankment. Orange colored deposits observed in wet point. 2. Wet swampy area observed at toe of dam about 80 feet from right end of dam. Orange colored deposits observed in portion of wet area. | Seepage should be monitored. | | STAFF GAGE AND RECORDER | None observed. | | | DRAINS | None observed. | | | | | , | | | EMBANKMENT | | |--|---|---| | VISUAL EXAMINATION | OBSERVATIONS | REMARKS OR RECOMMENDATIONS | | SURFACE CRACKS | None observed. | | | UNUSUAL MOVEMENT OR
CRACKING AT OR BEYOND
THE TOE | Bulge observed on downstream side of dam where down-stream channel meets toe of dam. Bulge approx. 15' wide, 10' high and protrudes from surface approx. 2' to 3'. Also, smaller bulged area of embankment at toe observed approx. 150' left of outlet works. | Bulgescould be indication of embankment
distress and should be investigated. | | SLOUGHÍNG OR EROSION OF
EMBANKMENT AND ABUTMENT
SLOPES | Some erosion of upstream face of embankment observed. | Eroded areas of upstream side of dam should be repaired. | | VERTICAL AND HORIZONTAL
ALIGNMENT OF THE CREST | Vertical: generally level.
.Horizontal: curved. | | | RIPRAP | Some riprap observed on the upstream
face of the dam.
Top of riprap about 2' below crest of embankment. | | | | | | 11 : ; ; ; ## OUTLET WORKS ### SPILLWAY | VISUAL EXAMINATION OF | OBSERVATIONS | REMARKS OR RECOMMENDATIONS | |-----------------------|--|--| | CONC. CULVERTS | The three (3) 12-inch CMP's were rusted severely. | Discharge culverts should be repaired or replaced. | | HEADWALL | Concrete headwall appeared to be in generally satisfactory condition with crack at one culvert. | Crack in headwall should be repaired. | | DISCHARGE CHANNEL | Culverts protrude from the downstream face of the embank-
ment - no headwall, apron, or other stabilization observed.
Discharge channel consisted of earth channel formed adja-
cent to downstream side of dam. | | | EMERGENCY SPILLWAY | No distinct channel downstream of grassed emergency spill-
way observed. Emergency spillway appeared to be formed in
original ground adjacent to left end of dam. | | | | | | ## INSTRUMENTATION | - | | INSTRUMENTATION | | |--|-----------------------|-----------------|----------------------------| | > | VISUAL EXAMINATION OF | OBSERVATIONS | REMARKS OR RECOMMENDATIONS | | ₹ | MONUMENTATION/SURVEYS | None | • | | 0 | OBSERVATION WELLS | None | · | | | WEIRS | None | | | | PIEZOMETERS | None | | | | ОТНЕR | | | | o de la companya della companya de la companya della dell | | | | # DOWNSTREAM CHANNEL | ļ | ľ | | |
 . | | |--------------------|----------------------------|--|--|---|--| | | REMARKS OR RECOMMENDATIONS | Dam is off-stream. | • | | | | DOWNSTREAM CHANNEL | OBSERVATIONS | Downstream channel flows approx. parallel to dam about 20' from toe. Spillway discharges into downstream channel by discharge channel. Downstream channel consists of wide natural stream with cobble-lined bed. | Banks approx. 2' high with moderate to steep wooded
terrain beyond the banks. | Small dam located 1100 feet downstream of dam. Two
dwellings and road bridge located 1200 feet downstream of
dam. Dwellings 6 feet above streambed. | | | • | VISUAL EXAMINATION OF | CONDITION (OBSTRUCTION, DEBRIS, ETC.) | SLOPES | STRUCTURES ALONG
BANKS | and the second s | ### RESERVOIR A STATE OF THE STA ### CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION Á | ITEM | | | | REMARKS | |--|--------|----------------------------|---------------|---------| | | | • | | | | DAM | | PLAN | Not Available | | | | | SECTIONS | | | | SPILLWAY | | PLAN | Not Available | | | | | SECTIONS | | | | | | DETAILS | | | | OPERATING EQUIPMENT
PLANS & DETAILS | S EQUI | | Not Available | | | OUTLETS | ı | PLAN | Not Available | | | | | DETAILS | | | | | | CONSTRAINTS | | | | | | DISCHARGE RATINGS | | | | HYDRAULI | C/HYDR | HYDRAULIC/HYDROLOGIC DATA | Not Available | | | RAINFALL, | /RESER | RAINFALL/RESERVOIR RECORDS | Not Available | | | CONSTRUCTION HISTORY | LION F | | Not Available | | Not Available LOCATION MAP | ITEM | REM | REMARKS | |---|---------------|---------| | DESIGN REPORTS | Not Available | | | GEOLOGY REPORTS | Not Available | | | DESIGN COMPUTATIONS
HYDROLOGY & HYDRAULICS
DAM INSTABILITY
SEEPAGE STUDIES | Not Available | | | MATERIALS INVESTIGATIONS
BORING RECORDS
LABORATORY
FIELD | Not Available | | | POST-CONSTRUCTION SURVEYS OF DAM | Not Available | | | BORROW SOURCES | Not Available | | | | • | | | | • | | |---------|--------------------|---------------|-------------------|--|--|-------------------------------------| | REMARKS | Not Available | Not Avialable | | ITEM | MONITORING SYSTEMS | MODIFICATIONS | HIGH POOL RECORDS | POST CONSTRUCTION ENGINEERING
STUDIES AND REPORTS | PRIOR ACCIDENTS OR FAILURE OF DAM POESCRIPTION REPORTS | MAINTENANCE
OPERATION
RECORDS | APPENDIX 2 Photographs PHOTO 1 INTAKE END OF SPILLWAY PHOTO 2 UPSTREAM VIEW OF EMERGENCY SPILLWAY PHOTO 3 GATE HOUSING AND DISCHARGE END OF LOW LEVEL OUTLET PHOTO 4 GATE OPERATING MECHANISM PHOTO 5 UPSTREAM FACE AND CREST OF EMBANKMENT PHOTO 6 DOWNSTREAM FACE OF EMBANKMENT PHOTO 7 SEEPAGE AT TOE OF DAM PHOTO 8 DOWNSTREAM CHANNEL ### APPENDIX 3 Engineering Data #### CHECK LIST #### HYDROLOGIC AND HYDRAULIC DATA #### ENGINEERING DATA | DRAINAGE A | REA CHARACTERISTICS: Wooded U.A.=U.15 Sq. m7 | |------------|--| | ELEVATION | TOP NORMAL POOL (STORAGE CAPACITY): 895.5 (62 acre-feet) | | ELEVATION | TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N.A. | | ELEVATION | MAXIMUM DESIGN POOL: 896.9 | | ELEVATION | TOP DAM: 896.7 | | | SPILLWAY CREST: | | a. | Elevation 895.5 | | ь. | Type Three 12-inch CMP | | с. | Width N.A. | | | Length 3 ft. | | e. | Location Spillover Downstream side of dam | | f. | Number and Type of Gates None | | AUXILIARY | SPILLWAY CREST: | | a. | Elevation 895.7 | | ь. | Type Grassed channel | | c. | Width N.A. | | d. | Length 20 ft. | | e. | Location Spillover Adjacent to left end of dam | | f. | Number and Type of Gates None | | OUTLET WOR | RKS: | |------------
---| | a. | Type Gated 12-inch CMP | | b. | Location Approx. center of dam | | c. | Entrance Invert Unknown | | d. | Exit Invert 873.7 | | | Emergency Draindown Facilities: Open gate | | | ROLOGICAL GAGES: None | | | Type N.A. | | | Location N.A. | | | Records N.A. | | c. | Records | | MAXIMUM NO | DN-DAMAGING DISCHARGE: | | (Lake | e Stage Equal to Top of Dam) 62 c.f.s. | . ### APPENDIX 4 Hydraulic/Hydrologic Computations FROM TP 40 U.S. WEATHER BUREAU : | STORCH ENGINEERS | Sheet of | |--------------------------------|---| | Project LAKE N. J. No Name #36 | Made By <u>JiHa</u> Date <u>3-11-3</u>
Chkd By <u>JG</u> Date <u>4/10/81</u> | | | Child By Date | | | | | OUTLET WORKS CAPACIT | · . | | | [H-SCHS - Pg. 5-34] | | top of dam elev. 6967 | | | L 215' L / 120' 35.0' | · · · | | | | | V-S- 895'0 | 4 | | W.S. 895'0 | | | | | | | | | CMP 12" | TW cler, 872.7 | | | | | | | | outlet inv | | | e/e/. 8/3 | | | | | | | * 20 004 | | OUTLET WORKS FOR LAKE | - No Name * 36 DA17 | | CONCICTS OF A CMP (| CULVERT WITH D = 12" | | CONSISTS OF A CMP C | ULILA, U | | WITH LENGTH OF APPLOX | IMATLY 70,0 Feet | | | | | DISCHARGE FROM "HYDRAU | LIC CHARTS FOR THE | | | | | SELECTION OF HIGHWAY | CULVERTS Pg. 34 | | | | | Nomograph values: | Q average = 7.0 [cfs] | | | a unity age | | Top of dam - 896.7 | HW = 11.0 [FH] | | TN - \$74.7 | ke = 0.9 | | | n - 0.024 | | 22 - 11.0 [77] | L = approx 70,0 [#+] | | | D = 12'' (1') | | | | HEC - 1 - DAM PRINTOUT Overtopping Analysis | A1 | | | N | ATIONAL | DAM SAFE | ETY PROGR | ΛM | | | | |------------|--------|-----------|-----------|----------|----------|-----------|--------|-------|-------|-------| | A2 | | | L | AKE NONA | ME #36 1 | DAM, NEW | JERSEY | | | | | A3_ | | | 1 | OO_YEAB_ | STORM RO | DUTING | | | | | | P | 150 | 0 | 15 | | | | 0 | 0 | 4 | | | B1 | 5 | | | | | | | | | | | J_ | 1 | 1_ | 1_ | | | | | | | | | J1 | 1 | | | | | | | | | | | K | 0 | LAKE | | | 0 | 0 | 1 | | | | | <u>K1_</u> | | | TIRDGRAPH | TO LAKE | NONAME | #36 DAM | | | | | | M | 0 | 2 | 0.15 | | 0.15 | | | | | | | 0 | 96 | | | | | | | | | | | 01_ | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | | 01 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | | 01 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | | 01_ | 0.019_ | 0.019_ | 0.019_ | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | | 01 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.038 | 0.038 | | 01 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | | 01_ | 0.083 | 0.083 | 0.083 | 0.083 | 0.163 | 0.163 | 0.163 | 0.163 | 0.750 | 0.750 | | 01 | 0.750 | 0.750 | 0.163 | 0.163 | 0.163 | 0.163 | 0.083 | 0.083 | 0.083 | 0.083 | | 01 | 0.083 | 0.083 | 0.083 | 0.083 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | | 01_ | 0.038 | 0.038 | 0.038 | 0,038 | 0.038 | 0.038 | | | | | | T | | | | | | | 1.5 | 0.15 | | | | W2 | | 0.6 | | | | | | | | | | X | -1.0 | -0.05 | 2.0 | | | | | | | | | K | 1 | IIAM | | | | | | | | | | K1 | F | ROUTE DIS | CHARGE T | HROUGH D | ሰለዘ | | | | | | | Y | | | | 1 | 1 | | | | | | | Y 1 | 1 | | | | | | -895.5 | -1 | | | | Y 4 | 895.5 | 896.5 | 896.7 | 897.7 | 898.7 | 899.7 | | | | | | Y5 | 0 | 38 | 62 | 166 | 295 | 448 | | | | | | \$ A | 0 | 8.7 | 16.0 | 36.7 | | | | | | | | \$E | 875.0 | 895.0 | 920.0 | 940.0 | | | | | | | | | 895.5 | | | | | | | | | | | \$ [! | 896.7 | 2.49 | 1.5 | 510.0 | | | | | | | | K | 1 | 1 | | | | | | | | | | K1 | | | | CHANNEL | REACH R | OUTING 1 | | | | | | Y | | | | 1 | 1 | | | | | | | Y1 | 1 | | | | | | | | | | | Y6_ | 0,08 | 0.04 | 0.08 | 863_ | B.6.9 | 1200 | 0.01 | | | | | Y7 | 0 | 869 | 40 | 867 | 80 | 866 | 83 | 863 | 91 | B63 | | Y7 | 97 | 866 | 117 | 867 | 127 | 869 | | | _ | • | | K_ | 99 | | | | | | | | | | NATIONAL DAM SAFETY FROGRAM | | | NSTAN
0 | | en et de land europe de la company de la | | | | TAGE IAUTO | 0
LOGAL | HX RIIHE
00 0.00 | | | | |------------------------|----------|------------------------------|------|--|---|-----------------------------|-----------------------------------|-----------------------|--------------------------------|--------------------------|----------------------|----------------------------|--| | | | IFRT | | | 44 | | | INAME ISTAGE
1 0 | ISNOW ISAME
0 0 | CHSTL ALSHX | | 5.00 | | | | | NETRC IFLT
0 0 0
TEACE | 0 | ERFORMED
3- 1 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | JPLT JFRT
0 0 | RATIO 180 | STRTL
1,50 | 4 | RTIOR= 2.00 | | | 100 YEAR STORN ROUTING | 0 | IMIN NE | 0 | MULTI-PLAN ANALYSES TO RE PERFORMED
NPLAN= 1 NRTIO= 1 LRTIO= 1 | | SUB-AREA RUNDFF COMPUTATION | 136 DAM | N ITAFE JF | AFH DATA
TRSPC
0.00 | STRKS RIIOK | UNIT HYDROGRAFH DATA | RECESSION DATA
GRCSN*05 | | | YEAR STORN | JOB SPEC | | 0 | -FLAN ANALYSES TO
NFLAN= 1 NRTIO* 1 | | B-AREA RUNG | AKE NONAME | IECO | HYDROBRA
SNAF TRSDA
0.00 | LOSS
ERAIN ST | i | RECESSION
-1.00 GRCSN= | | | 100 | | NHIN IDAY
15 0 | 2012 | | | 1 | HYDROGRAPH TO LAKE NONAME 136 DAM | ISTAG ICONF
LAKE 0 | TAREA S | 1.00 | 10= | STRIG≖ -1 | | | | | NHR
0 | | İ | 100 T = 200 T N | | INFLOW HYDRI | 13 | 3 IUHB | STRKR DLTKR
0.00 0.00 | | | | | | | N0
150 | | | | | ** | | IHYDG | LROPT ST | | | | | | | | | | | | | | | | | | | SUM 7.12 4.33 2.79 1813. | *** | **** | * | **** | * | **** | * | ***** | *** | ** | ***** | |---------------|------|-----------------------------|--------------|--------|--------------------|----------|------------|-------|--------------|-------| | | | | | HYPRO | HYDROGRAFH ROUTING | UTING | | | | | | | | ROUTE DISCHARGE THROUGH DAN | RGE THROU | GH DAM | | | | | | | | | | ISTAR | AND ICOMP | | IECON ITAPE | JFLT | JFRT | INAME | INAME ISTAGE | IAUTO | | | | a | | | | | 0 | 0 | 0 | 0 | | | | ัชน์กรร | SSAVO | 1. | IKES ISAME | IOFT | IPMF | | LSTR | | | | | 0.0 0.000 | | | | 0 | ٥ | | 0 | | | | | NSI | NSIES NS. UL | L LAG | | | TSK | STORA | ISPRAT | | | | | | 1 | | 0000 | 0.000 | ò | -896. | 1 | | | STAGE 895. | 50 | 896.50 | 896.70 | ! | 897.70 898.70 | 898.70 | 899.70 | 0 | | | | FLOW 0 | 00. | 38.00 | 62.00 | 166.00 | 00 | 295.00 | 448.00 | | | | | SURFACE AREA= | 0 | .6 | 16. | 37. | | | | | | | | CAPACITY | 0. | 58. | 362. | 875. | | | | | | | | ELEVATION= | 875. | 895. | 920. | 940. | | | | | | | | | | CREL | SPUID | | | ELEVL | COUL CAREA | | EXPL | | | | | 895.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | | | | | TOPEL | 3 | DAM DATA | DAMWID | | | | 211. AT TINE 18.50 HOURS FEAK DUTFLOW IS | OFERATION | STATION | AREA FLAN | FLAN RATIO 1 | RAT | RATIOS AFFLIED TO FLOWS | ro FLOWS | | | |---------------|--------------------|----------------------------------|------------------------------|-----------------------------|--------------------------------|-------------------------------|---------------------------|-----------------------------| | : | | | 1.00 | | | | | | | HYDROGRAFH AT | AT LAKE | .15 | 226. | | | | | | | | ~ | ,39) | 6.41)(| | | | | | | ROUTED TO | DAM | .15 | 211. | | | | | | | | • | ,39) | 2.98) | | | | | | | ROUTED TO | - | 15 1, | 207. | | | | | | | | | | ns | HHARY OF DA | SUHHARY OF DAN SAFETY ANALYSIS | . YSIS | | | | FLAN | 1 | ELEUATION | INI | VALUE
.50 | SPILLWAY CREBT
895.50 | 107 | OF DAM
896.70 | | | | | STORAGE
OUTFLOW | | 62. | 62. | | 62. | | | | RATIO
OF
PHF | HAXIMUM
RESERVOIR
W.S.ELEV | HAXIMUM
DEPTH
OVER DAM | MAXIMUM
STORAGE
AC-FT | MAXIMUM
OUTFLOW
CFS | JURATION
OVER TOP
HOURS | TIME OF HAX OUTFLOW HOURS | TINE OF
FAILURE
HOURS | | | 1.00 | 896.92 | •22 | 75. | 211. | 1.50 | 18.50 | 00.0 | | | | | 6. | FLAN 1 | STATION | | | | | | | | 01108 | MAXIMUM | HAXIMUM | TIME
HOURS | | | APPENDIX 5 Bibliography - "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 20314. - 2. <u>Design of Small Dams</u>, Second Edition, United States Department of the Interior, Bureau of Reclamation, United States Government Printing Office, Washington, D.C., 1973. - 3. Holman, William W. and Jumikis, Alfreds R., <u>Engineering Soil</u> <u>Survey of New Jersey</u>, <u>Report No. 11</u>, <u>Sussex County</u>, <u>Rutgers</u> University, New Brunswick, N.J. 1953. - 4. "Geologic Map of New Jersey, "prepared by J. Volney Lewis and Henry B. Kummel, Dated 1910-1912, revised by H.B. Kummel, 1931 and M. Johnson, 1950. - 5. Chow, Ven Te., Ed., <u>Handbook of Applied Hydrology</u>, McGraw-Hill Book Company, 1964. - 6. Herr, Lester A., <u>Hydraulic Charts for the Selection of Highway Culverts</u>, U.S. Department of Transportation, Federal Highway Administration, 1965. - 7. <u>Safety of Small Dams</u>, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974. - 8. King, Horace Williams and Brater, Ernest F., <u>Handbook of Hydraulics</u>, Fifth Edition, McGraw-Hill Book Company, 1963. - 9. <u>Urban Hydrology for Small Watersheds, Technical Release No. 55,</u> Engineering Division, Soil Conservation Service, U.S. Department of Agriculture, January 1975.